"Think of taking a blood vessel — a cylindrical object — and trying to reconstruct it in 3D with two-dimensional slices," said U. Presidential Professor of Medicinal Chemistry Glenn D. Prestwich, who created the hydrogel. He likens the resulting slices to a "non-nutritious doughnut" with muscle cells on the outside and endothelial cells inside. To make the cylinder, those flat doughnut sections are literally printed, one thin layer of cells and hydrogel at a time, the platform moving away from the printer's "bio-ink"-delivering needles as the cylinder grows.
The cells in the gel are alive and will begin to move from one side to the other, one "doughnut" to the other, fusing and interweaving to form a complete, living cylinder. The advantage of his hydrogel over others, Prestwich said, is the cells will stick to them well. They don't with others, which are typically made of synthetic polymers.
The research has received $5 million in funding from the National Science Foundation.
Source: KurzweilAI.net
No comments:
Post a Comment